If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-31=5x
We move all terms to the left:
6x^2-31-(5x)=0
a = 6; b = -5; c = -31;
Δ = b2-4ac
Δ = -52-4·6·(-31)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{769}}{2*6}=\frac{5-\sqrt{769}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{769}}{2*6}=\frac{5+\sqrt{769}}{12} $
| (2x+2)^2=336 | | 3y+20=y | | z/9+3=1 | | 3x+4=4-4x | | 4.4+10m=8.68 | | 2x-8=5x+3/2 | | (x+x+2)^2=336 | | -5×n+6÷=31 | | 4x+5=11+x | | 3(x-2)^2=150 | | 3x+5=6x+4 | | 20=-8y+4(y-4) | | k/9=10/3 | | x/5+4x+3(x-5)=0 | | (5x-2)+(4x-13)+(4x-13)=180 | | 13z=177 | | z-14=5 | | −7+4m+10=15−2m | | 1=(x-100)/15 | | y-18=-15 | | 6s+4=10 | | 2x+1/3x+5=11/20 | | d+5(2d-4)-20=½(6d+18)+2d-1 | | 4/3k=4 | | 23-8q=7 | | 3x+15x=6 | | 4f+2=6 | | 2x-4-x=13 | | 31=5p+28-4p | | -3x+5=-9x-25 | | 1/r=1-r/100 | | -16t^2=157 |